
MA 1118 - Multivariable Calculus
Final Exam - Quarter I - AY 02-03

Instructions: Work all problems. Read the problems carefully. Show appropriate work,
as partial credit will be given. Two pages 8-1/2x11 notes and “Blue books” permitted.
Scientific calculators not permitted.

1. (25 points) Determine whether each of the following series converges absolutely, con-
verges conditionally, or diverges. Clearly explain the reason(s) for your answer in each
case:

a.
∞X
n=0

(−1)n n
2 + 5

n4 + 1

solution:

Observe that this is an alternating series, but also

an = (−1)n n
2 + 5

n4 + 1
=⇒ |an| = n2 + 5

n4 + 1
→ n2

n4
=
1

n2

for “large” n. Therefore, the given series converges absolutely by the limit
comparison test and p-tests (p = 2).

b.
∞X
n=1

ln(n) en

n!

solution:

For this series: an =
ln(n)en

n!
, and the behavior for “large” n is not

obvious. Therefore, since we have both a variable exponent and a factorial, the
ratio test is strongly suggested. (Note an > 0 for all n.) Proceeding

¯̄̄̄
an+1
an

¯̄̄̄
=
an+1
an

=

ln(n+1)en+1

(n+1)!

ln(n)en

n!

=
n! ln(n+ 1)en+1

(n+ 1)! ln(n)en
=

e ln(n+ 1)

(n+ 1) ln(n)
=

and so

lim
n→∞

an+1
an

= e lim
n→∞

∙
ln(n+ 1)

ln(n)

¸
lim
n→∞

∙
1

(n+ 1)

¸

= e · lim
n→∞

"
1

n+1
1
n

#
· 0 = e · 1 · 0 = 0 < 1
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solution:

where we used L’Hospital’s rule on the logarithms limit. Therefore, by the
ratio test, the original series converges (and absolutely because the terms were
already positive).

c.
∞X
n=0

n2

(n+ 1)2

solution:

For this series: an =
n2

(n+ 1)2
. Therefore, for “large” n

an → n2

n2
= 1 6= 0

Therefore, the original series diverges, since the terms don’t go to zero.

d.
∞X
n=0

(−1)nn
n2 + 4

solution:

For this series: an = (−1)n n

n2 + 4
. Therefore, for “large” n

an → (−1)n n
n2
= (−1)n 1

n

Therefore, the original series cannot converge absolutely since |an| behaves
like 1/n, which diverges by the p-test (p=1). However, since the an alter-
nate in sign, and approach zero uniformly as n→∞, then this series converges
(conditionally) by the alternating series test.
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2. (20 points) a. Use the Taylor polynomial (series) for
√
1 + x, with the terms up

through n = 2, expanded around the point x0 = 0 to approximate the value of
√
1.2.

solution:

Since we will need terms up through x3 to estimate the error, we begin
with the table

n f (n)(x) f (n)(0) cn

0 (1 + x)1/2 1 1

1 1
2 (1 + x)

−1/2 1
2

1
2

2 −14 (1 + x)−3/2 −14
− 1
4

2! = −18
3 3

8 (1 + x)
−5/2 3

8

3
8

3! =
1
16

Therefore, the Taylor series up through n = 2 is

√
1 + x

.
= c0 + c1x+ c2x

2 = 1 +
1

2
x− 1

8
x2

Hence, since
√
1 + x =

√
1.2 =⇒ x = 0.2, we then have

√
1.2

.
= 1 +

1

2
(.2)− 1

8
(.2)2 = 1 + .1− .005 = 1.095

(compared to an actual vaule of 1.095445...).

b. Without actually computing
√
1.2, estimate the error in this approximation.

solution:

According to the Taylor Remainder Theorem, the error in approximating
any function f(x) by a Taylor polynomial of degree n (i.e. the first n terms of
its Taylor series) is:

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1

where ξ is some undetermined point in the interval between x0 and x.
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solution:

Moreover, the error can also be estimated, generally to at least the correct
order of magnitude, by evaluting the remainder expression at ξ = x0 (i.e., in
this case, at ξ = 0). This produces

R2(.2) =
f (3)(0)

(3)!
(.2)3 = c3(.2)

3 =
1

16
(.008) = .0005

a value which compares very favorably with the true error of 0.000445....
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3. (20 points) a. Find an equation for the tangent line to the curve:

r(t) = cos(t) i + ln(1 + 2t) j + t sin(3t) k at t =
π

2

solution:

To write the equation for a line in space, we need to know a point on
the line and the direction of the line. But we also know that the derivative

of r(t), i.e.
dr

dt
represents the velocity vector for the motion described by r(t),

and therefore lies in the direction of the tangent to the trajectory traced out
by r(t). But

dr

dt
=
dx

dt
i+

dy

dt
j+

dz

dt
k = − sin(t)i+ 2

1 + 2t
j+ (sin(3t) + 3t cos(3t))k

Therefore, at t = π/2,

v =
dr

dt
= − sin(π/2) i+ 2

1 + 2(π/2)
j+

¡
sin(3(π/2)) + 3(π/2) cos(3(π/2))

¢
k

= −(1) i+ 2

1 + π
j+ (−1) k = −i+ 2

1 + π
j− k

Since the tangent vector must pass through the point on the curve at t = π/2,
we find the point as

r(π/2) = cos(π/2) i + ln(1 + 2(π/2)) j + (π/2) sin(3π/2) k

= (0) i + ln(1 + π) j+ (π/2)(−1) k = ln(1 + π) j− π

2
k

and so the equation of the tangent line is

ln(1 + π) j− π

2
k + s

µ
−i+ 2

1 + π
j− k

¶
or

x = −s , y = ln(1 + π) +
2

1 + π
s , z = −π

2
− s
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b. Find an equation for the plane through the point P0 = (−1, 1, 10) and tangent to
the surface

6x2 − 4y2 = 12− z

solution:

The tangent plane to a surface z = f(x, y) is, of course, simply the
linearization of that surface at that point, i.e. the function

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) + ∂f

∂y
(x0, y0)(y − y0)

In this case, the original surface can be written

z = 12− 6x2 + 4y2 ≡ f(x, y) =⇒ fx = −12x
fy = 8y

and so the linearization is

z = 10 + (−12(−1))(x− (−1)) + (8(1))(y − 1)

or
z = 14 + 12x+ 8y

We could also find this by computing the gradient to level surface

z + 6x2 − 4y2 = 12

at the point (−1, 1, 10), and then, using that as the normal to the plane, write
the standard equation.
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4. (25 points) Given

f(u, v) = uv2 + sin(uv) , and u = x2y , v = xexy

find
∂f

∂x
,

∂2f

∂u2
and

∂2f

∂v∂u

solution:

According to the chain rule for partial derivatives

∂f

∂x
=
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x

=
¡
v2 + v cos(uv)

¢
(2xy) +

¡
2uv + u cos(uv)

¢
(exy + xyexy)

=
¡
(xexy)

2
+ (xexy) cos(

¡
x2y

¢
(xexy))

¢
(2xy) +¡

2
¡
x2y

¢
(xexy) +

¡
x2y

¢
cos(

¡
x2y

¢
(xexy))

¢
(exy + xyexy)

Similarly
∂f

∂u
= v2 + v cos(uv)

and so
∂2f

∂u2
= −v2 sin(uv)

and
∂2f

∂v∂u
= 2v + cos(uv)− uv sin(uv)
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5. (30 points) Find and correctly identify all the local maxima, minima and saddle points
of

f(x, y) = 2y2 − 2y3 + 4xy − x2

solution:

The critical points for this function are given by

fx = 4y − 2x = 0 =⇒ x = 2y

fy = 4y − 6y2 + 4x = 0

Substituting the expression for x in terms of y into the second equation yields

fy = 4y − 6y2 + 8y = 12y − 6y2 = 6y(2− y) = 0 =⇒ y = 0, 2

Therefore, since x = 2y, there are only two critical points, (0, 0) and (4, 2).
Setting up the standard table, we have

x y fxx = −2 fyy = 4− 12y fxy = 4 fxxfyy − f2xy Type

0 0 −2 4 4
(−2)(4)− (4)2

= −24 saddle

4 2 −2 −20 4
(−2)(−20)− (4)2

= 24 > 0
max

where (4, 2) must be a local maxima because fxx < 0 there. (Or, alternatively,
because fyy < 0 there.)
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6. (35 points) Interchange the order of integration in the following integral and then
compute its value: Z 2

0

Z 1

y/2

ex
2

dxdy

solution:

The associated region of integration is the shaded area shown below:

This same region can be “covered” by
(1) Letting x take on every value between zero and one
(2) At each of these values of x, letting y take on every value between y = 0

and y = 2x.

i.e. by:

Therefore, the integral can be rewrittenZ 1

x=0

nZ 2x

y=0

ex
2

dy| {z }
yex2

¯̄̄2x
y=0

o
dx =

Z 1

x=0

2xex
2

dx = ex
2
¯̄̄1
x=0

= e− 1
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7. (35 points) Consider the solid region R in space which lies above the plane z = −1, and
inside the sphere

x2 + y2 + z2 = 4 .

Set up (DO NOT EVALUATE) the iterated integrals needed to findZZZ
x dV

R

in each of the following coordinate systems:
(a) Cartesian.
(b) Cylindrical.
(c) Spherical.

solution:

The associated region of integration is shown below:

To integrate this in Cartesian coordinates, the best “shadow” to use is in either
the xz or yz planes, since the “shadow” in the xy plane includes a interior
“edge” where the plane and sphere interest. The “ shadow” in the xz plane is

This region can be “covered” by
(1) For every value of z between −1 and 2,
(2) Letting x vary from −√4− z2 to +√4− z2.
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solution:

Then, at every point in that “shadow,” a line normal to the xz plane will
intersect the surface of the solid exactly twice

(1) Entering at y = −√4− x2 − z2, and
(2) Exiting at y = +

√
4− x2 − z2.

Therefore, the requisite integral is

Z 2

z=−1

Z √4−z2
x=−√4−z2

Z √4−x2−z2
y=−√4−x2−z2

x dy dx dz

In cylindrical coordinates, we can use essentially the same figure as the
“side” view,

and, since, because of symmetry, θ must take on every value between zero
and 2π, the integral becomes (replacing the x in the intgerand by its value in
terms of cylindrical coordinates):

Z 2

z=−1

Z √4−z2
r=0

Z 2π

θ=0

(r cos(θ)) r dθ dr dz

=

Z 2

z=−1

Z √4−z2
r=0

Z 2π

θ=0

r2 cos(θ) dθ dr dz

The situation in spherical coordinates is, unfortunately, a bit “nastier,”
since the formula for the value or ρ on the boundary changes depending on φ.
Specifically,

ρ = 2 , 0 ≤ φ ≤ 2π/3
ρ = −1/ cos(φ) , 2π/3 < φ ≤ π

(see next figure).
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solution:

Therefore, unfortunately, in this case, we must express the integral as a sum
of two integrals. Specifically (again replacing the integrand of x by its value in
terms of spherical coordintes:Z 2π

θ=0

Z 2π/3

φ=0

Z 2

ρ=0

(ρ sin(φ) cos(θ)) ρ2 sin(φ) dρ dφ dθ

+

Z 2π

θ=0

Z π

φ=2π/3

Z −1/ cos(φ)
ρ=0

(ρ sin(φ) cos(θ)) ρ2 sin(φ) dρ dφ dθ

or Z 2π

θ=0

Z 2π/3

φ=0

Z 2

ρ=0

ρ3 sin2(φ) cos(θ) dρ dφ dθ

+

Z 2π

θ=0

Z π

φ=2π/3

Z −1/ cos(φ)
ρ=0

ρ3 sin2(φ) cos(θ) dρ dφ dθ

(Whew!!!!)

7 - 3



8. (10 points) Find:
∞X
n=1

3nx2n

solution:

This series can be rewritten:

∞X
n=1

3nx2n =
∞X
n=1

¡
3x2

¢n
which is essentially a geometric series (r = 3x2), except that the geometric
series starts with n = 0, not n = 1. That, however, is easily fixed, i.e.

∞X
n=1

¡
3x2

¢n
=
∞X
n=0

¡
3x2

¢n − 1 = 1

1− 3x2 − 1 =
3x2

1− 3x2
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